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Singular vectors of representations of quantum groups 

V K Dobrevl 
Institute for Theoretical Physics, University of GBttiwgen, Bumemtrasse 9, 3400 
GBttingen, Federal Republic of Germany. 

Received 25 Jume 1991 

Abs t rac t .  In the bresent article we give explicit formulae for singular vedors of 
V e m a  modules over Uq(S).  We give the general formula for S = A,, for some cases 
when 0 = D, and  for some rank-two rubalgebras of S # An,Dn. For this we use a 
special basis of Ue(O-), where 0- is the negative root rubalgebra of C, which was 
introduced in our earlier work on the case p = 1, This b-is seem more economical 
than the Poincak-BirkhoK-Witt type of basis used by Melikov, I'eigin and Fuchs for 
the construction of singular vectors of Verma modules in  the case q = 1. Furthermore 
this basis tuns out to  be part  of a general basis inlroduced recently for other reasom 
by Lusztig for Uq(O-), where O- is a Bore1 subalgebra of 0. 

1. Introduction 

We consider the q-deformation U,(G) of the universal enveloping algebras U(G) of 
simple Lie algebras G which are also called quantum groups [l] or quantum universal 
enveloping algebras [2,3].  They arose in the study of the algebraic aspects of quantum 
integrable systems 14-61, For recent reviews we refer to  171. In [6b] for G = sI(2,C) 
and in [I, 81 in general it was observed that the algebras U,(G) have the structure 
of a Hopf algebra. This new algebraic structure was further studied in [9-11]. The 
representations of U,(G) were considered in [3, 5, 9, 12) for generic values oC the 
deformation parameter. In fact all results from the representation theory of G carry 
over to  the quantum group case. This is not so, however, if the deformation parameter 
q is a root of unity. Thus this case is very interesting from the mathematical point 
of view (see, e.g., (13-151). Lately, quantum groups were intensively applied (with 
special emphasis on the case when q is  a root of unity)  in rational conformal field 
theories ji6-21 and in two-dimensionai quantum gravity [Zj. 

In [23] we began the study of the representation theory of U,@) when the defor- 
mation parameter q is a root of unity. We consider the induced highest weight modules 
(HWM) over U,(G),  which are also called Verma modules. They all are reducible for 
qN = 1, N E W + 1. In [23] we adapted to  U,(G) the previously developed approach 
of multiplet classification of Verma modules over (infinite-dimensional) (super-) Lie 
aigebras [%U], in [iS-30] we gave the character iormuiae for the irreducible HWM 
over U,(G) when G = sI(3,C). 
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These developments use results on the embeddings of the reducible Verma modules. 
These embeddings are realized by the sc-called singular vectors (or nul l  or eztremal 
vectors). In [23] we gave the general formula for the singular vectors which, however, 
was not so explicit. Some explicit formulae for singular vectors of Verma modules over 
U,(A,) were presented in [31]. 

In the present article we give explicit formulae for the singular vectors of Verma 
modules over U,(G). We give the general formula for G = A,, for some cases when 
G = D, and for some rank-two subalgebras of G # A, ,D, .  As in 1231 and [31] we 
use a special basis of Uq(G-) ,  where 8- is the negative root subalgebra of 9, which 
was introduced in our earlier work on the case q = 1 [24, 321. This basis seems more 
economical than the Poincarh-Birkhoff-Witt type of basis used by Malikov, Feigin and 
Fuchs [33] for the construction of singular vectors of Verma modules in the case q = 1. 
Furthermore our basis turns out to be part of a general basis introduced recently for 
-&Le- _---- ..- I.., 1 4:- mi c-. 17 ( P I ,  vJhare E- is B = ~ ~ !  sGba!geb:a =f E, s l "  " Y l l r l  I . z ( w u , I m  Y J  """OUL6 LO', L"I v 

where (a..) = (2(ai,oj)/(ai,ai)) is the Cartan matrix ofG, (., .) is the scalar product 
of the roots normalized so that for the short simple roots a we have (@,a) = 2, 
E 1 - n.  

' I  

- % J ,  

q4U = p P A  = n j  03. ( 4 4  

This definition is also valid for arbitrary affine Lie algebras [l]. Furthermore we shall 
omit the subscript q in [m], if no confusion can arise. Note also that instead of q some ... th,.. = "2 l k m  - 1 Ih  c), we recover the coE%G?2?inn re!&!iOEShipS 
UYY.L"." "II y y . I"& y - I ,  \" 

from (1) and (2)  and Serre's relationships from (3) in terms of the Chevalley generators 
Hi,  X:. The elements Hi span the Cartan subalgebra 71 of 9,  while the elements 
X: generate the subalgebras G*. We shall use the standard decompositions G = 
71 @ @ G - B+ @ 'R a GA = A+ U A- is the root system of 6,  A+, A-, the 

PEA P - 



Singular vectors of represeniations of quantum groups 151 

sets of positive, negative, roots, respectively. We recall that Hi correspond to the 
simple roots ai of G ,  and if p = Ci Iliai, then ffp = Ci niHi corresponds to P. The 
elements of G which span Gp, (recall that  dim G, = l),  will be denoted by X p .  'These 
Cartan-Weyl generators are normalized so that 

[Xp,X-pI = [HpIq, for P E A+,  q, = q(pzp)'a. (5) 

In [6b] for 6 = sI(2,C) and in [l, 71 in general i t  was observed that the algebra U,(G) 
is a Hopf algebra [ 3 5 ] .  However, we shall not use this and consequently we shall not 
introduce the corresponding structure. 

3. Highest weight modules over U,@) 

The HWM V over U,(G) [2 ]  are given by their highest weight X E 31. and highest 
weight vector vo E V such that 

x:vo = 0 i = l ,  . . . ,  l H v ,  = A(H)v ,  H E 31. ( 6 )  

We start with the induced HWM or Verma modules VA such that VA 3 Uq(G)@uq(B)vo 
E Uq(G-) @ U,, where B = B+, B* = 31 @ G* are Bore1 subalgebras of G. (Then 
the algebras U,(B*) with generators H i ,  X? are Hopf subalgebras of U,(G) 121.) The 
representation theory of VA parallels the theory ofVerma modules V(A) over G. (V(A) 
is defined as the HWM over G induced from the one-dimensional representations of B.) 
In particular, we shall consider the irreducible HWM L, over U,(G) as factor modules 
V' / IA>  where I' is the maximal submodule of V', 

We recall several facts from [23, 311. If q is not a root of unity then the Verma 
module VA is reducible iff there exists a root @ E A+ and m E W such that 

[(A + P , P " )  - " I , @  = 0 P' 3 ZPl (P,  P )  (7)  

holds, where p = 4 CaG,4+ 01.  (Condition ( 7 )  is the generalization of the Verma 
modules reducibility conditions for finite-dimensional G [36] and for affine Lie algebras 
[37].) If (7) holds then there exists a vector vs E V A ,  called a singular vector, such that 
v , # v o , X ~ v , = O , i =  1, . . . ,  I , H v , =  ( A ( H ) - m P ( H ) ) v , , H E ' H .  ThespaceU(G-)v, 
is a proper submodule of V' isomorphic to the Verma module V""@ = U ( G - )  @ vb 
where the isomorphism being realized by 
vg c 1 @ v;. The singular vector is given by [24, 25, 231 

is the highest weight vector of 

vs = vP" = P i p ; ,  . . . , x;) @ vo (8) 

where Pi is a homogeneous polynomial in its variables of degrees mni,  where ni E iz, 
come from P = C n i a i ,  where ai is the system of simple roots. The polynomial p t  
is unique up to a non-zero multiplicative constant. 

The Verma module VA contains a unique proper maximal submodule lA. Among 
the HWM with highest weight X there is a unique irreducible one, denoted by L A ,  i.e. 

L A  = V"P.  (9) 
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If VA is irreducible then LA = VA. Thus we discuss LA for which VA is reducible. 
Consider VA reducible with respect to every simple root (and thus to all positive 
roots): 

[ ( X + p , a Y ) - m i l q ,  = [ ( X ) ( H i ) + 1 - m i l q j  = o  i = l ,  . . . ,  l (10) 

where we have used p ( a y )  = 1 .  Then L, is a finitedimensional highest weight module 
over G [3, 5, 101. If we restrict G to its compact real form Gc then the set of all 
LA coincides with the set of all finite dimensional unitary irreducible representations 
of Gc. (In the case of affine Lie algebras, L A  with (10) holding are the so-called 
integrable HWM [38].) An important class of the case when (10) holds are the so- 
called fundamental representations LA,, i = l , .  . . , I  characterized by (Xi,aj') = S i j ,  
i.e. ( X i  + p , a r )  = 1 + 6.. $3 = mj(Xi). The representations of U,(G) are deformations 
of the representations of U ( G ) ,  and the latter are obtained from the former for q -+ 1 

Recently, De Concini and Kac [13] have given a formula for the determinant of 
the contravariant form on the Verma modules V A .  This result implies, in the usual 
way, the description of irreducible subquotients of V A ,  In particular, this confirms 
our results on the embeddings of the reducible modules VA [23], part of which were 
summarized eariier. 

[lo]. 

4. Singular  vectors  for generic q 

4.1. The case of the sample roots 

Let = a j ;  then from expression (8) we have 

We obtain, using (Z), 

m- 1 

[X/, (X;)m] = C(x;)"-'-"HjIq,(x;,~ 
k=O 

m-1 

= (Xi:)"-' c [ H j  -Zklq ,  = (Xj7)m-1[m]qj[Hj - m +  (1'4 
k = O  

If U'," is a singular vector we should have 

o = x ; ~ , ~  = [~/,(x;)~]c3~, = ( X ~ - ) ~ - ~ [ ~ ] , , [ X ( H , )  - m +  ij , ,c3~,, .  (13) 

(Note that X$vJ,"' = 0, for k # j.) If q j  = q ( o ~ ~ o I ) / 2  is not a root of unity (13) gives 
just condition ( 7 ) . )  
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4.2. 

As another example we take a root which is the sum of two simple roots of equal 
length: p = a1 + a2, (p,p) = (aj,aj),j = 1,2,  p' = ay + a;, This case is relevant 
for U,(G) for G = A,,n  > 1, p = B,,n > 2, = C,,n > 2, G = D , , n  > 3, 
G = E6, E,, E,, Fa. For G = B, the two roots al, a2 are long, for G = C, they are 
short, while for G = F4 there is one case when they are long and one case when they 
are short. Let us have condition (7) fulfilled for 0, but not for aj,j = 1 , Z :  

[(A + p,  P ' )  - "Iqb = [WO) + 2 - "Iqe = 0 

[(A + f ,  a;) - "Iq, # 0 j = 1 , 2  Vm' E 23,. (14b) 

Pp = '11 = 92 ( 1 4 4  

(The reason for the appearance of Z, in (146) instead of N will become clear in 
subsection 4.6.) Then one can check that the singular vector is given by [23] 

For this check we also need the following formula involving the 9-hypergeometric 
function 2F:: 

where 

770,-  1 .~ .\  - 2'i (u,";";z,  = 
[Q + n]![b + n]![c]! _" 

L [a]![b]![c + n]![n]! ' ' 
"€E+ 

Such special q-functions are discussed in [3, 391. 
For g -+ 1 formula (15) goes to the correct formula in the same situation [24-321 (cf 

formulae (8.40) and (8,41)). One should notice that this is not the ordered Poincarb 
Birkhoff-Witt type of basis. This basis invoives oniy simpie root space vectors and 
it was used in our earlier work in the case y = 1 [24-321. We think that this basis is 
more economical for the construction of singular vectors. It is very interesting that 
our basis turns out to be part  of a general basis introduced recently for other reasons 
by Lusztig [34] for U,(B-). 
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4.3. 

Let p = a1 + a2, where al is a long simple root and 01, a short simple root (cf (17a)) 
so that 

(17a) 

(17b) 

l+C aI2 = -1 a , , = - l - E  ~ = l , 2  q l=q  92 = 9 

p v  = 0 = (1 +€)ay +a; gg = 9 

and let 

[(A + p , P " )  - mlgp = [Wl)(l + E )  + A(&) + 2 + E - ml,, = 0 

[(A + f >  ay, - "'I,, f 0 

The case E = 1 is relevant for G = B,,C,, F4, while the case E = 2 is relevant for 
g = G,. Now one can check that the singular vector is given by 

j = 1,2,Vm' E Z+. 

4.4. 
Let P = a1 +2a,, where al, a2 are as in the previous case ( a  long and ashort simple 
root), cf (17a), so that 

p v  = EP/2 = E ( 1 +  E ) 4 / 2  + E a ;  Pp = P 2 l c  (20) 

and let 

[(A + p,  P ' )  - "Igp = [€(I + E ) A ( H , ) / ~  + EA(HJ + d 3  + ~ ) / 2  - mlqp 

= [ (1+ c)A(H1) + 2A(H,) + (3  + E)  - 2m/~] ,  = 0 

[ (A+p,ay)  - m'Iu # 0 i = 1 , 2  

Now one can check that the singular vector for E = 1 is given hy 

Vm' E E+ 

2m 

= czl m k (  ( X ; ) m ( X ; ) k  8 110 
k=O 
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4.5. 
Let S = G,, let p = a1 + 3a,, where a1 is the long and a2 the short simple root, Cf 
(17a), so that 

(23) 3 pv = p/3  = ay + a: 

[(A + p , P v )  - " I q p  = [Wl) + A(H2)  + 2 - mIqp = 0 (24a) 

[(A+p,a;)-"], 20 j =  1 , 2  V"EZ+. (24b) 

Pg = P 

and let 

Now one can check that the singular vector is give 

3m 

= Cc:k(X;)3m-*(X;)m(X;)X 8 vo 
k=O 

4.6. 

Let G = A, andle t  a,,i = 1, ..., I be the simple roots, so that (aj,ak) = -1 for 
lj - kl = 1 and (aj, as )  = 2 S j k  for lj - kl # 1. Then every root p E Af is given by 
P = pi, = a, + where 1 6 i 4 I ,  1 < n < 1 - i + 1. Recall that a 
root 6 E A+ is called the highest root of A if 6 + p is not a root for any p E A+.  For 
A, the highest root is given by 6 = al + a2 + . . . +aI.  Thus every root @ E Af is the 
highest root of a subalgebra of A,; explicitly pi, is the highest root of the subalgebra 
A,, with simple roots ai ,  a i + l , .  . . , This means that it is sufficient to give the 
formula for the singular vector corresponding to the highest root. 

+ . . . + 

Let us have condition (7) fulfilled for 6 ,  bu t  not for any other positive root: 

[(A + p ,  6') - mIq = [A(H,) + 1 - mIq = 0 ( 2 6 4  

[ ( ~ + p , P ~ ~ ) - m ' l , = [ ~ ( ~ i , ) + ~ - ~ ' l , # O  n # l  Vm'EZ+.  (26b) 

Now one can check that the angular vector is given by 
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where H a  = Hp, ,  = H ,  + H ,  + .  . . + H,. Note that for I = 2 formula (27) coincide 
with formula (15) with qj  = q.  Formula (27) for I = 3 may be written equivalently as 

m m  

"6.m = c ; , , k , ( X ; ) m - k ' ( X a ) m - k ~ ( X 2 ) m ( X g ) ~ ~ ( X ; ) k I  8 uo (28a) 
k I = Q  k l = 0  

and for q -+ 1 gives the correct formula in the same situation [24, 321 (cf for- 
mula (8.42)). 

4.7. 
Let G = D,, I >, 4, and let ai ,  i = 1,. . . , I  be the simple roots, so that 

(-1 l i - j [ = l , i , j # /  
-1  ij = / ( I -  2) 

(a; ,a j )  = ( 2  i = j  
( 0  otherwise. 

Let us consider roots pi E A+ given by & = ai +ait, + . . .+a,, where i 6 i 6 i - 2. 
Note that  0; is a root of the subalgebra D,-;+, with simple roots (I;, niClr . . . ,al. 
This means that,  in order to account for all roots pi, it is sufficient to give the formula 
for the singular vector corresponding to the root p = = a, + a,  + .  . . + a,. (This 
is not the highest root of D,.) 

Let us have condition (7) fulfilled for 8, but not for any subroot y of 8 (y' E At 
is a subroot of 7" E At if y" - y' may be expressed as a linear combination of simple 
roots with non-negative coefficients): 

- 

[(A + p , T )  - mIq = [A(H~)  + I - m], = 0. (30) 

Now one can check that the singular vector is given by 
m m 

IJJ" = c . , . z E ,  ,,,,,, kl_, ( x q m - k t  . . . (X,,)m-kl-s (X, *.'-1 

k l = 0  k t - ,=O 

x (X;)m-"-~(XI_2)m(X;)kI-~(XI_-L)kI-I(XI_3)~1-3 ' ' ' ( x ; ) k 1  @ 210 

(31a) 

where H 3  = Hp. = H ,  + H ,  + . . . + H,.  Note that if we set formally I = 3 in these 
formulae they will coincide with the formulae for A,  E D,, in particular in the form 
(28), identifying the roots ( n , ,  n 2 ,  n3)Ds i (a2, a,, 
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4.8. 

The singular vectors given in (15), (19), (22), (25), (27), (28) and (31) are in the 
generic situation, i.e. when condition (7) is fulfilled for p, but not for the subroots of 
/3. Let us consider formula (15) or (27) for I = 2 when 

[(A+p,a:)-mjlq, = 0  j =  1 , 2  mj E z+ m I + m z € E l  (32) 
i.e. condition (14) is fulfilled in addition for a t  least one of the roots (I?,(I,, and for 
the other root i t  may be broken only in the sense that the corresponding number mk 
may be equal to zero. Then formulae (15a) and (15b) reduce to 

cl(X;)myX;)m(X;)m' 'a U0 (33a) 
= c2(x,)m1(x;)m(x,)mJ ' a v o  (336) 

(33e) 

( 3 3 4  

by ?he Wey! dot reflection shifted h:ghest 'weight X - ma1 = cI  .a , ,  X - -- "'-2 - - " I  E . - -. LI 

, ,Pm = 

m 2  
~ I Y - \ ~ I  F - I  , v - \ m . - k , v - \ m , , v - \ k + m l  - .. 
- ( A 2  I ~ L " m , i i A 1  I ~ ("2 I I w " 0  

k=O 
ml 

= (X;)- ~c~,k(X;)"'-"x;)"'(x;)k++"' 8 vo 
k=O 

where m = m, + m2 E El, c:,~, c;,~, respectively, is given by (15c) with X replaced 

respectively, i.e. with X(Hi) + 1 replaced by -mi, i = 1,2,  respectively. [Weyl dot 
reflections W .  X are defined through the ordinary Weyl reflections w(X) by w . X 
w(A + p )  - p, where w E W ,  W is the Weyl group of G generated by the reflections si 
corresponding to the simple roots m i ,  the ordinary Weyl reflections being defined by 
.,(A) E X - (A ,  (I")(I, for any (I E A.] The four expressions in (33) are used to prove 
commutativity of certain embedding diagrams, in particular the hexagon diagram of 
U,(s1(3,@)) [23] (or, for q = I ,  the hexagon diagram of sl(3,C) [25]) 

If (32) holds then formula (19a) reduces to 

c:(X;)~-"(X;)~(X;)" 8 uo m = (1 + ~ ) m ,  + m2 (34a) 

m m. + m. (346) 

= 

formula (22a) reduces to 

$;? c ; ( * ~ ;  12m-mz (x; ) m ( - q  )ma "71 " ' I  

formula (250) reduces to 

$m = c;(X;)3"-"a(X;)m(X2)mz 8 uo 

(7) is also fulfilled for a t  least one of the  simple roots a:, (I,, (I~, i.e. 

[ ( X + p , a ; ) - m j l q  = O  j = 1 , 2 , 3  m j E z +  m = m , + m , + m 3 E W .  

(35) 

vPam = c;(X;)mZJ(X;)ml(X3)m(X;)"~(X;)" @ vo (36a) 
= c;(x-!m,3(X;!m,,(X-!"(X-)m3(X-)" 60 W O  (36b)  

= c;(x;)"'z(X,)ml (x;)"(X,)"yX;)"~ 8 uo ( 3 6 4  

m = ml + m,. (34c) 
Analogously let us consider formula (28) or (27) for 1 = 3 in the case when condition 

Denoting m.. = mi + m. we write down the reduction of formula (27a) or (28a): 
' I  I 

and several other expressions which analogously to (33c) and ( 3 3 4  use the polynomials 
corresponding to roots which are the sum of two simple roots (and some expressions 
which use the trivial commutativity [X;, X;] = 0). 
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5. Singular vectors for q a root of unity 

Let G be an arbitrary simple complex Lie algebra again. Let q be a root of unity. 
Then all Verma modules VA are reducible. For each VA there exist singular vectors 
for arbitrary X E %*. They are given explicitly by [23] 

where N j  E W + 1 are the smallest integers such that qp = 1, j = 1, . . . ,1.  The factors 
(X;)'jNj up to a sign belong to the centre of U,(G) [23]. Namely, let ui ,u j , i  # j be 
two simple roots with equal length so that aij # 0. Then using Serre relationships (3) 
and pi = qj  we obtain 

x;(x;)k = - [ k  - l],;(Xy)"x; + [ k ] , ; ( X ; ) * - ' X - X -  i j '  (38) 

x; (X:)kjNj J = (- 1 ) k ~  ( X ; ) ' > N J X ; ,  (39) 

Thus if q j  = e2*i/NJ we have 

In particular, the elements belong to the centre of U,(G). I t  is clear that  the 
Verma submodules of VA corresponding to the singular vectors in (37) are explicitly 
given by VA' with A' = A - xi=l k i N j o r j .  

Besides this there exist ot er singular vectors if the highest weight A obeys the 
condition (7). Consider p E A+,  p = xnja j ,  and let N p  E W + 1 be the smallest 
integer such that q p p  = 1, with qp as in (5 ) .  Let us have condition (7) fulfilled for p 
with some m E N but not fulfilled for any subroots of 8. Let k ,  n E Z+, k + n > 0, 
n < No be such that m = k N p  + n. Then we have the following expression for the 
singular vector: 

N 

,,B.n.k = cP!P~p-")"p,p 8 110 (40) 

where P ( ( X ; ,  , , . , X;) is a homogeneous polynomial as in (8). For explicit expres- 
sions of P! we refer to formulae ( l l ) ,  (15), (19), (22), ( 2 5 ) ,  (27), (28), (31), with m 
replaced by U. It  is clear that the submodules of Vi corresponding to the singular 
vectors in (40) are explicitly given by Vi' with A' = A - C:=,(kjNj + nnj )u , j .  

In summary, the singular vectors for q a root of unity which are given by (40) are 
obtained by combining the factors ni .=l ( X ; - ) " j N j  (from (37 ) )  with the polynomials 
P k  (from (8)) giving the singular vectors in the generic case, however with the degree 
m restricted by N , .  
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