Singular vectors of representations of quantum groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25149
(http://iopscience.iop.org/0305-4470/25/1/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:26

Please note that terms and conditions apply.

Singular vectors of representations of quantum groups

V K Dobrev \dagger
Institute for Theoretical Physics, University of Göttingen, Bunsenstrasse 9, 3400 Göttingen, Federal Republic of Germany.

Received 25 Jume 1991

Abstract

In the present article we give explicit formulae for singular vectors of Verma modules over $\mathrm{U}_{q}(\mathcal{G})$. We give the general formula for $\mathcal{G}=A_{n}$, for some cases when $\mathcal{G}=D_{n}$ and for some rank-two subalgebras of $\mathcal{G} \neq A_{n}, D_{n}$. For this we use a special basis of $\mathrm{U}_{q}\left(\mathcal{G}^{-}\right)$, where \mathcal{G}^{-}is the negative root subalgebra of \mathcal{G}, which was introduced in our earlier work on the case $q=1$. This basis seems more economical than the Poincaré-Birkhoff-Witt type of basis used by Malikov, Feigin and Fuchs for the construction of singular vectors of Verma modules in the case $q=1$. Furthermore this basis turns out to be part of a general basis introduced recently for other reasons by Lusztig for $\mathrm{U}_{\mathrm{q}}\left(\mathcal{B}^{-}\right)$, where \mathcal{B}^{-}is a Borel subalgebra of \mathcal{G}.

1. Introduction

We consider the q-deformation $\mathrm{U}_{q}(\mathcal{G})$ of the universal enveloping algebras $\mathrm{U}(\mathcal{G})$ of simple Lie algebras \mathcal{G} which are also called quantum groups [1] or quantum universal enveloping algebras [2,3]. They arose in the study of the algebraic aspects of quantum integrable systems [4-6]. For recent reviews we refer to [7]. In [6b] for $\mathcal{G}=\operatorname{sl}(2, \mathbb{C})$ and in $[1,8]$ in general it was observed that the algebras $\mathrm{U}_{q}(\mathcal{G})$ have the structure of a Hopf algebra. This new algebraic structure was further studied in [9-11]. The representations of $\mathrm{U}_{q}(\mathcal{G})$ were considered in $[3,5,9,12]$ for generic values of the deformation parameter. In fact all results from the representation theory of \mathcal{G} carry over to the quantum group case. This is not so, however, if the deformation parameter q is a root of unity. Thus this case is very interesting from the mathematical point of view (see, e.g., [13-15]). Lately, quantum groups were intensively applied (with special emphasis on the case when q is a root of unity) in rational conformal field theories [16-21] and in two-dimensional quantum gravity [22].

In [23] we began the study of the representation theory of $\mathrm{U}_{q}(\mathcal{G})$ when the deformation parameter q is a root of unity. We consider the induced highest weight modules (HWM) over $\mathrm{U}_{q}(\mathcal{G})$, which are also called Verma modules. They all are reducible for $q^{N}=1, N \in \mathbb{N}+1$. In [23] we adapted to $\mathrm{U}_{q}(\mathcal{G})$ the previously developed approach of multiplet classification of Verma modules over (infinite-dimensional) (super-) Lie algebras [24-27]. In [28-30] we gave the character formulae for the irreducible HWM over $\mathrm{U}_{q}(\mathcal{G})$ when $\mathcal{G}=\operatorname{sl}(3, \mathbb{C})$.

[^0]These developments use results on the embeddings of the reducible Verma modules. These embeddings are realized by the so-called singular vectors (or null or extremal vectors). In [23] we gave the general formula for the singular vectors which, however, was not so explicit. Some explicit formulae for singular vectors of Verma modules over $\mathrm{U}_{q}\left(A_{n}\right)$ were presented in [31].

In the present article we give explicit formulae for the singular vectors of Verma modules over $\mathrm{U}_{q}(\mathcal{G})$. We give the general formula for $\mathcal{G}=A_{n}$, for some cases when $\mathcal{G}=D_{n}$ and for some rank-two subalgebras of $\mathcal{G} \neq A_{n}, D_{n}$. As in [23] and [31] we use a special basis of $\mathrm{U}_{q}\left(\mathcal{G}^{-}\right)$, where \mathcal{G}^{-}is the negative root subalgebra of \mathcal{G}, which was introduced in our earlier work on the case $q=1$ [24,32]. This basis seems more economical than the Poincaré-Birkhoff-Witt type of basis used by Malikov, Feigin and Fuchs [33] for the construction of singular vectors of Verma modules in the case $q=1$. Furthermore our basis turns out to be part of a general basis introduced recently for other reasons by Lusztig [34] for $\mathrm{U}_{q}\left(\mathcal{B}^{-}\right)$, where \mathcal{B}^{-}is a Borel subalgebra of \mathcal{G}.

2. Definitions

Let \mathcal{G} be any complex simple Lie algebra; then $\mathrm{U}_{q}(\mathcal{G})$ is defined $[1,8]$ as the associative algebra over \mathbb{C} with generators $X_{i}^{ \pm}, H_{i}, i=1, \ldots, l=$ rank \mathcal{G} and with relationships

$$
\begin{align*}
& {\left[H_{i}, H_{j}\right]=0 \quad\left[H_{i}, X_{j}^{ \pm}\right]= \pm a_{i j} X_{j}^{ \pm}} \tag{1}\\
& {\left[X_{i}^{+}, X_{j}^{-}\right]=\delta_{i j} \frac{q_{i}^{H, / 2}-q_{i}^{-H_{i} / 2}}{q_{i}^{1 / 2}-q_{i}^{-1 / 2}}=\delta_{i j}\left[H_{i}\right]_{q_{i}} \quad q_{i}=q^{\left(\alpha_{i}, \alpha_{i}\right) / 2}} \tag{2}\\
& \sum_{k=0}\left(X_{i}^{ \pm}\right)^{k} X_{j}^{ \pm}\left(X_{i}^{ \pm}\right)^{n-k}=0 \quad i \neq j \tag{3}
\end{align*}
$$

where $\left(a_{i j}\right)=\left(2\left(\alpha_{i}, \alpha_{j}\right) /\left(\alpha_{i}, \alpha_{i}\right)\right)$ is the Cartan matrix of $\mathcal{G},(\cdot, \cdot)$ is the scalar product of the roots normalized so that for the short simple roots α we have $(\alpha, \alpha)=2$, $n=1-a_{i j}$,
$\binom{n}{k}_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} \quad[m]_{q}!=[m]_{q}[m-1]_{q} \ldots[1]_{q}$
$[m]_{q}=\frac{q^{m / 2}-q^{-m / 2}}{q^{1 / 2}-q^{-1 / 2}}=\frac{\sinh (m h / 2)}{\sinh (h / 2)}=\frac{\sin (\pi m \tau)}{\sin (\pi \tau)} \quad q=\mathrm{e}^{h}=\mathrm{e}^{2 \pi \mathrm{i} \tau}, h, \tau \in \mathbb{C}$
$q_{i}^{a_{i j}}=q^{\left(\alpha_{i}, \alpha_{j}\right)}=q_{j}^{a_{j i}}$.
This definition is also valid for arbitrary affine Lie algebras [1]. Furthermore we shall omit the subscript q in $[m]_{q}$ if no confusion can arise. Note also that instead of q some authors use $q^{\prime}=q^{2}$. For $q \rightarrow 1,(h \rightarrow 0)$, we recover the commutation relationships from (1) and (2) and Serre's relationships from (3) in terms of the Chevalley generators $H_{i}, X_{i}^{ \pm}$. The elements H_{i} span the Cartan subalgebra \mathcal{H} of \mathcal{G}, while the elements $X_{i}^{ \pm}$generate the subalgebras $\mathcal{G}^{ \pm}$. We shall use the standard decompositions $\mathcal{G}=$ $\mathcal{H} \oplus \underset{\beta \in \Delta}{\oplus} \mathcal{G}_{\beta}=\mathcal{G}^{+} \oplus \mathcal{H} \oplus \mathcal{G} \Delta=\Delta^{+} \cup \Delta^{-}$is the root system of $\mathcal{G}, \Delta^{+}, \Delta^{-}$, the
sets of positive, negative, roots, respectively. We recall that H_{i} correspond to the simple roots α_{i} of \mathcal{G}, and if $\beta=\sum_{i} n_{i} \alpha_{i}$, then $H_{\beta}=\sum_{i} n_{i} H_{i}$ corresponds to β. The elements of \mathcal{G} which span \mathcal{G}_{β}, (recall that $\operatorname{dim} \mathcal{G}_{\beta}=1$), will be denoted by X_{β}. These Cartan-Weyl generators are normalized so that

$$
\begin{equation*}
\left[X_{\beta}, X_{-\beta}\right]=\left[H_{\beta}\right]_{q_{\beta}} \quad \text { for } \beta \in \Delta^{+}, q_{\beta}=q^{(\beta, \beta) / 2} \tag{5}
\end{equation*}
$$

In [6b] for $\mathcal{G}=\operatorname{sl}(2, \mathbb{C})$ and in $[1,7]$ in general it was observed that the algebra $\mathrm{U}_{q}(\mathcal{G})$ is a Hopf algebra [35]. However, we shall not use this and consequently we shall not introduce the corresponding structure.

3. Highest weight modules over $\mathrm{U}_{\mathbf{q}}(\mathcal{G})$

The HWM V over $\mathrm{U}_{q}(\mathcal{G})$ [2] are given by their highest weight $\lambda \in \mathcal{H}^{*}$ and highest weight vector $v_{0} \in V$ such that

$$
\begin{equation*}
X_{i}^{+} v_{0}=0 \quad i=1, \ldots, l \quad H v_{0}=\lambda(H) v_{0} \quad H \in \mathcal{H} \tag{6}
\end{equation*}
$$

We start with the induced HWM or Verma modules V^{λ} such that $V^{\lambda} \cong \mathrm{U}_{q}(\mathcal{G}) \otimes_{\mathrm{U}_{q}(\mathcal{B})} v_{0}$ $\cong \mathrm{U}_{q}\left(\mathcal{G}^{-}\right) \otimes v_{0}$, where $\mathcal{B}=\mathcal{B}^{+}, \mathcal{B}^{ \pm}=\mathcal{H} \oplus \mathcal{G}^{ \pm}$are Borel subalgebras of \mathcal{G}. (Then the algebras $\mathrm{U}_{q}\left(\mathcal{B}^{ \pm}\right)$with generators $H_{i}, X_{i}^{ \pm}$are Hopf subalgebras of $\mathrm{U}_{q}(\mathcal{G})$ [2].) The representation theory of V^{λ} parallels the theory of Verma modules $V(\Lambda)$ over \mathcal{G}. $(V(\Lambda)$ is defined as the HWM over \mathcal{G} induced from the one-dimensional representations of \mathcal{B}.) In particular, we shall consider the irreducible HWM L_{λ} over $\mathrm{U}_{q}(\mathcal{G})$ as factor modules $V^{\lambda} / I^{\lambda}$, where I^{λ} is the maximal submodule of V^{λ}.

We recall several facts from [23, 31]. If q is not a root of unity then the Verma module V^{λ} is reducible iff there exists a root $\beta \in \Delta^{+}$and $m \in \mathbb{N}$ such that

$$
\begin{equation*}
\left[\left(\lambda+\rho, \beta^{\vee}\right)-m\right]_{q_{\beta}}=0 \quad \beta^{\vee} \equiv 2 \beta /(\beta, \beta) \tag{7}
\end{equation*}
$$

holds, where $\rho=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha$. (Condition (7) is the generalization of the Verma modules reducibility conditions for finite-dimensional \mathcal{G} [36] and for affine Lie algebras [37].) If (7) holds then there exists a vector $v_{\mathrm{s}} \in V^{\lambda}$, called a singular vector, such that $v_{\mathrm{s}} \neq v_{0}, X_{i}^{+} v_{\mathrm{s}}=0, i=1, \ldots, l, H v_{\mathrm{s}}=(\lambda(H)-m \beta(H)) v_{\mathrm{s}}, H \in \mathcal{H}$. The space $U\left(\mathcal{G}^{-}\right) v_{\mathrm{s}}$ is a proper submodule of V^{λ} isomorphic to the Verma module $V^{\lambda-m \beta}=U\left(\mathcal{G}^{-}\right) \otimes v_{0}^{\prime}$ where v_{0}^{\prime} is the highest weight vector of $V^{\lambda-m \beta}$; the isomorphism being realized by $v_{\mathrm{s}} \mapsto 1 \otimes v_{0}^{\prime}$. The singular vector is given by [24, 25, 23]

$$
\begin{equation*}
v_{\mathrm{s}}=v^{\beta, m}=\mathcal{P}_{m}^{\beta}\left(X_{1}^{-}, \ldots, X_{l}^{-}\right) \otimes v_{0} \tag{8}
\end{equation*}
$$

where \mathcal{P}_{m}^{β} is a homogeneous polynomial in its variables of degrees $m n_{i}$, where $n_{i} \in \mathbb{Z}_{+}$ come from $\beta=\sum n_{i} \alpha_{i}$, where α_{i} is the system of simple roots. The polynomial \mathcal{P}_{m}^{β} is unique up to a non-zero multiplicative constant.

The Verma module V^{λ} contains a unique proper maximal submodule I^{λ}. Among the HWM with highest weight λ there is a unique irreducible one, denoted by L_{λ}, i.e.

$$
\begin{equation*}
L_{\lambda}=V^{\lambda} / I^{\lambda} \tag{9}
\end{equation*}
$$

If V^{λ} is irreducible then $L_{\lambda}=V^{\lambda}$. Thus we discuss L_{λ} for which V^{λ} is reducible. Consider V^{λ} reducible with respect to every simple root (and thus to all positive roots):

$$
\begin{equation*}
\left[\left(\lambda+\rho, \alpha_{i}^{\vee}\right)-m_{i}\right]_{q_{i}}=\left[(\lambda)\left(H_{i}\right)+1-m_{i}\right]_{q_{i}}=0 \quad i=1, \ldots, l \tag{10}
\end{equation*}
$$

where we have used $\rho\left(\alpha_{i}^{\vee}\right)=1$. Then L_{λ} is a finite-dimensional highest weight module over $\mathcal{G}[3,5,10]$. If we restrict \mathcal{G} to its compact real form \mathcal{G}_{c} then the set of all L_{λ} coincides with the set of all finite dimensional unitary irreducible representations of \mathcal{G}_{c}. (In the case of affine Lie algebras, L_{λ} with (10) holding are the so-called integrable HWM [38].) An important class of the case when (10) holds are the socalled fundamental representations $L_{\lambda_{i}} ; i=1, \ldots, l$ characterized by $\left(\lambda_{i}, \alpha_{j}^{\vee}\right)=\delta_{i j}$, i.e. $\left(\lambda_{i}+\rho, \alpha_{j}^{\vee}\right)=1+\delta_{i j}=m_{j}\left(\lambda_{i}\right)$. The representations of $\mathrm{U}_{q}(\mathcal{G})$ are deformations of the representations of $U(\mathcal{G})$, and the latter are obtained from the former for $q \rightarrow 1$ [10].

Recently, De Concini and Kac [13] have given a formula for the determinant of the contravariant form on the Verma modules V^{λ}. This result implies, in the usual way, the description of irreducible subquotients of V^{λ}. In particular, this confirms our results on the embeddings of the reducible modules V^{λ} [23], part of which were summarized earlier.

4. Singular vectors for generic q

4.1. The case of the simple roots

Let $\beta=\alpha_{j}$; then from expression (8) we have

$$
\begin{equation*}
v^{j, m}=\left(X_{j}^{-}\right)^{m} \otimes v_{0} \tag{11}
\end{equation*}
$$

We obtain, using (2),

$$
\begin{align*}
{\left[X_{j}^{+},\left(X_{j}^{-}\right)^{m}\right] } & =\sum_{k=0}^{m-1}\left(X_{j}^{-}\right)^{m-1-k}\left[H_{j}\right]_{q_{j}}\left(X_{j}^{-}\right)^{k} \\
& =\left(X_{j}^{-}\right)^{m-1} \sum_{k=0}^{m-1}\left[H_{j}-2 k\right]_{q_{j}}=\left(X_{j}^{-}\right)^{m-1}[m]_{q_{j}}\left[H_{j}-m+1\right]_{q_{j}} \tag{12}
\end{align*}
$$

If $v^{j, m}$ is a singular vector we should have
$0=X_{j}^{+} v^{j, m}=\left[X_{j}^{+},\left(X_{j}^{-}\right)^{m}\right] \otimes v_{0}=\left(X_{j}^{-}\right)^{m-1}[m]_{q_{j}}\left[\lambda\left(H_{j}\right)-m+1\right]_{q}, \otimes v_{0}$.
(Note that $X_{k}^{+} v^{j, m}=0$, for $k \neq j$.) If $q_{j}=q^{\left(\alpha_{j}, \alpha_{j}\right) / 2}$ is not a root of unity (13) gives just condition (7).)

4.2.

As another example we take a root β which is the sum of two simple roots of equal length: $\beta=\alpha_{1}+\alpha_{2},(\beta, \beta)=\left(\alpha_{j}, \alpha_{j}\right), j=1,2, \beta^{\vee}=\alpha_{1}^{\vee}+\alpha_{2}^{\vee}$. This case is relevant for $\mathrm{U}_{\mathfrak{g}}(\mathcal{G})$ for $\mathcal{G}=A_{n}, n>1, \mathcal{G}=B_{n}, n>2, \mathcal{G}=C_{n}, n>2, \mathcal{G}=D_{n}, n>3$, $\mathcal{G}=E_{6}, E_{7}, E_{8}, F_{4}$. For $\mathcal{G}=B_{n}$ the two roots α_{1}, α_{2} are long, for $\mathcal{G}=C_{n}$ they are short, while for $\mathcal{G}=F_{4}$ there is one case when they are long and one case when they are short. Let us have condition (7) fulfilled for β, but not for $\alpha_{j}, j=1,2$:

$$
\begin{align*}
& {\left[\left(\lambda+\rho, \beta^{\vee}\right)-m\right]_{q_{\beta}}=\left[\lambda\left(H_{\beta}\right)+2-m\right]_{q_{\beta}}=0 \quad q_{\beta}=q_{1}=q_{2}} \tag{14a}\\
& {\left[\left(\lambda+\rho, \alpha_{j}^{\vee}\right)-m^{\prime}\right]_{q_{j}} \neq 0 \quad j=1,2 \quad \forall m^{\prime} \in \mathbb{Z}_{+}} \tag{14b}
\end{align*}
$$

(The reason for the appearance of \mathbb{Z}_{+}in (14b) instead of \mathbb{N} will become clear in subsection 4.6.) Then one can check that the singular vector is given by [23]

$$
\begin{align*}
v^{\beta, m} & =\sum_{k=0}^{m} c_{m k}^{1}\left(X_{1}^{-}\right)^{m-k}\left(X_{2}^{-}\right)^{m}\left(X_{1}^{-}\right)^{k} \otimes v_{0} \tag{15a}\\
& =\sum_{k=0}^{m} c_{m k}^{2}\left(X_{2}^{-}\right)^{m-k}\left(X_{1}^{-}\right)^{m}\left(X_{2}^{-}\right)^{k} \otimes v_{0} \tag{15b}\\
c_{m k}^{i} & =(-1)^{k} c^{i}\binom{m}{k}_{q_{i}} \frac{\left[\lambda\left(H_{i}\right)+1\right]_{q_{i}}}{\left[\lambda\left(H_{i}\right)+1-k\right]_{q_{i}}} \quad i=1,2 \quad c^{i} \neq 0 \tag{15c}
\end{align*}
$$

For this check we also need the following formula involving the q-hypergeometric function ${ }_{2} F_{1}^{q}$:

$$
\begin{equation*}
{ }_{2} F_{1}^{q}\left(-k, s ; s+1-p ; q^{(p-k) / 2}\right)=\delta_{p 0} \frac{[k]![s]!}{[k+s]!} q^{k s / 2} \tag{16a}
\end{equation*}
$$

where

$$
\begin{equation*}
{ }_{2} F_{1}^{q}(\bar{a}, b ; c ; z ; z) \equiv \sum_{n \in \mathbb{Z}_{+}} \frac{[a+n]![b+n]![c]!}{[a]![b]![c+n]![n]!} z^{n} . \tag{16t}
\end{equation*}
$$

Such special q-functions are discussed in [3, 39].
For $q \rightarrow 1$ formula (15) goes to the correct formula in the same situation [24-32] (cf formulae (8.40) and (8.41)). One should notice that this is not the ordered Poincaré-Birkhoff-Witt type of basis. This basis involves only simple root space vectors and it was used in our earlier work in the case $q=1[24-32]$. We think that this basis is more economical for the construction of singular vectors. It is very interesting that our basis turns out to be part of a general basis introduced recently for other reasons by Lusztig [34] for $\mathrm{U}_{q}\left(\mathcal{B}^{-}\right)$.
4.9.

Let $\beta=\alpha_{1}+\alpha_{2}$, where α_{1} is a long simple root and α_{2} a short simple root (cf ($17 a$)) so that
$a_{12}=-1 \quad a_{21}=-1-\varepsilon \quad \varepsilon=1,2 \quad q_{1}=q^{1+\varepsilon} \quad q_{2}=q$
$\beta^{\vee}=\beta=(1+\varepsilon) \alpha_{1}^{\vee}+\alpha_{2}^{\vee} \quad q_{\beta}=q$
and let
$\left[\left(\lambda+\rho, \beta^{\vee}\right)-m\right]_{q_{\beta}}=\left[\lambda\left(H_{1}\right)(1+\varepsilon)+\lambda\left(H_{2}\right)+2+\varepsilon-m\right]_{q_{\beta}}=0$
$\left[\left(\lambda+\rho, \alpha_{j}^{\vee}\right)-m^{\prime}\right]_{q_{j}} \neq 0 \quad j=1,2, \forall m^{\prime} \in \mathbb{Z}_{+}$.
The case $\varepsilon=1$ is relevant for $\mathcal{G}=B_{n}, C_{n}, F_{4}$, while the case $\varepsilon=2$ is relevant for $\mathcal{G}=G_{2}$. Now one can check that the singular vector is given by

$$
\begin{align*}
& v^{\beta, m}=\sum_{k=0}^{m} c_{m k}^{11}\left(X_{1}^{-}\right)^{m-k}\left(X_{2}^{-}\right)^{m}\left(X_{1}^{-}\right)^{k} \otimes v_{0} \tag{19a}\\
& \varepsilon_{m k}^{11}=(-1)^{k} c^{11}\binom{m}{k}_{q_{1}} \frac{\left[\lambda\left(H_{1}\right)+1\right]_{q_{1}}}{\left[\lambda\left(H_{1}\right)+1-k\right]_{q_{1}}} \tag{19b}
\end{align*}
$$

4.4.

Let $\beta=\alpha_{1}+2 \alpha_{2}$, where α_{1}, α_{2} are as in the previous case (a long and a short simple root), cf (17a), so that

$$
\begin{equation*}
\beta^{\vee}=\varepsilon \beta / 2=\varepsilon(1+\varepsilon) \alpha_{1}^{\vee} / 2+\varepsilon \alpha_{2}^{\vee} \quad q_{\beta}=q^{2 / \varepsilon} \tag{20}
\end{equation*}
$$

and let

$$
\begin{align*}
& {\left[\left(\lambda+\rho, \beta^{\vee}\right)-m\right]_{q_{\beta}}=\left[\varepsilon(1+\varepsilon) \lambda\left(H_{1}\right) / 2+\varepsilon \lambda\left(H_{2}\right)+\varepsilon(3+\varepsilon) / 2-m\right]_{q_{\beta}}} \\
& \quad=\left[(1+\varepsilon) \lambda\left(H_{1}\right)+2 \lambda\left(H_{2}\right)+(3+\varepsilon)-2 m / \varepsilon\right]_{q}=0 \tag{21a}\\
& {\left[\left(\lambda+\rho, \alpha_{j}^{\vee}\right)-m^{\prime}\right]_{q_{j}} \neq 0 \quad j=1,2 \quad \forall m^{\prime} \in \mathbb{Z}_{+} .} \tag{21b}
\end{align*}
$$

Now one can check that the singular vector for $\varepsilon=1$ is given by

$$
\begin{align*}
& v_{c=1}^{\beta, m}=\sum_{k=0}^{2 m} c_{m k}^{21}\left(X_{2}^{-}\right)^{2 m-k}\left(X_{1}^{-}\right)^{m}\left(X_{2}^{-}\right)^{k} \otimes v_{0} \tag{22a}\\
& c_{m k}^{21}=(-1)^{k} c^{21}\binom{2 m}{k}_{q} \frac{\left[\lambda\left(H_{2}\right)+1\right]_{q}}{\left[\lambda\left(H_{2}\right)+1-k\right]_{q}} \tag{22b}
\end{align*}
$$

4.5.

Let $\mathcal{G}=G_{2}$, let $\beta=\alpha_{1}+3 \alpha_{2}$, where α_{1} is the long and α_{2} the short simple root, of (17a), so that

$$
\begin{equation*}
\beta^{\vee}=\beta / 3=\alpha_{1}^{\vee}+\alpha_{2}^{\vee} \quad q_{\beta}=q^{3} \tag{23}
\end{equation*}
$$

and let

$$
\begin{align*}
& {\left[\left(\lambda+\rho, \beta^{\vee}\right)-m\right]_{q \beta}=\left[\lambda\left(H_{1}\right)+\lambda\left(H_{2}\right)+2-m\right]_{q \rho}=0} \tag{24a}\\
& {\left[\left(\lambda+\rho, \alpha_{j}^{\vee}\right)-m^{\prime}\right]_{q_{j}} \neq 0 \quad j=1,2 \quad \forall m^{\prime} \in \mathbb{Z}_{+}} \tag{24b}
\end{align*}
$$

Now one can check that the singular vector is give

$$
\begin{align*}
& v^{\beta, m}=\sum_{k=0}^{3 m} c_{m k}^{31}\left(X_{2}^{-}\right)^{3 m-k}\left(X_{1}^{-}\right)^{m}\left(X_{2}^{-}\right)^{k} \otimes v_{0} \tag{25a}\\
& c_{m k}^{31}=(-1)^{k} c^{31}\binom{3 m}{k}_{q^{3}} \frac{\left[\lambda\left(H_{2}\right)+1\right]_{q^{3}}}{} . \tag{25b}
\end{align*}
$$

4.6.

Let $\mathcal{G}=A_{\mathrm{l}}$ and let $\alpha_{i}, i=1, \ldots, l$ be the simple roots, so that $\left(\alpha_{j}, \alpha_{k}\right)=-1$ for $|j-k|=1$ and $\left(\alpha_{j}, \alpha_{k}\right)=2 \delta_{j k}$ for $|j-k| \neq 1$. Then every root $\beta \in \Delta^{+}$is given by $\beta=\beta_{\text {in }}=\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{i+n-1}$, where $1 \leqslant i \leqslant l, 1 \leqslant n \leqslant l-i+1$. Recall that a root $\tilde{\alpha} \in \Delta^{+}$is called the highest root of Δ if $\tilde{\alpha}+\beta$ is not a root for any $\beta \in \Delta^{+}$. For A_{1} the highest root is given by $\tilde{\alpha}=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{l}$. Thus every root $\beta \in \Delta^{+}$is the highest root of a subalgebra of A_{1}; explicitly $\beta_{i n}$ is the highest root of the subalgebra A_{n} with simple roots $\alpha_{i}, \alpha_{i+1}, \ldots, \alpha_{i+n-1}$. This means that it is sufficient to give the formula for the singular vector corresponding to the highest root.

Let us have condition (7) fulfilled for $\tilde{\alpha}$, but not for any other positive root:

$$
\begin{align*}
& {\left[\left(\lambda+\rho, \tilde{\alpha}^{\vee}\right)-m\right]_{q}=\left[\lambda\left(H_{\bar{\alpha}}\right)+l-m\right]_{q}=0} \tag{26a}\\
& {\left[\left(\lambda+\rho, \beta_{i n}^{\vee}\right)-m^{\prime}\right]_{q}=\left[\lambda\left(H_{i n}\right)+n-m^{\prime}\right]_{q} \neq 0 \quad n \neq l \quad \forall m^{\prime} \in \mathbb{Z}_{+} .} \tag{26b}
\end{align*}
$$

Now one can check that the angular vector is given by

$$
\begin{align*}
v^{\bar{\alpha}, m}=\sum_{k_{1}=0}^{m} \cdots & \sum_{k_{i-1}=0}^{m} c_{k_{1}, \ldots, k_{l-1}}\left(X_{1}^{-}\right)^{m-k_{1}} \ldots\left(X_{l-1}^{-}\right)^{m-k_{l-1}} \\
& \times\left(X_{l}^{-}\right)^{m}\left(X_{l-1}^{-}\right)^{k_{l-1}} \ldots\left(X_{1}^{-}\right)^{k_{1}} \otimes v_{0} \tag{27a}\\
c_{k_{1}, \ldots, k_{l-1}}= & (-1)^{k_{1}+\cdots+k_{i-1}} c^{l}\binom{m}{k_{1}}_{q} \cdots\binom{m}{k_{l-1}}_{q} \\
& \times \frac{\left[(\lambda+\rho)\left(H^{1}\right)\right]}{\left[(\lambda+\rho)\left(H^{1}\right)-k_{1}\right]} \cdots \frac{\left[(\lambda+\rho)\left(H^{l-1}\right)\right]}{\left[(\lambda+\rho)\left(H^{l-1}\right)-k_{l-1}\right]} \quad c^{l} \neq 0 \tag{27b}
\end{align*}
$$

where $H^{s}=H_{\rho_{1}}=H_{1}+H_{2}+\cdots+H_{s}$. Note that for $l=2$ formula (27) coincide with formula (15) with $q_{j}=q$. Formula (27) for $l=3$ may be written equivalently as
$v^{\bar{\alpha}, m}=\sum_{k_{1}=0}^{m} \sum_{k_{2}=0}^{m} c_{k_{1}, k_{2}}^{\prime}\left(X_{1}^{-}\right)^{m-k_{1}}\left(X_{3}^{-}\right)^{m-k_{2}}\left(X_{2}^{-}\right)^{m}\left(X_{3}^{-}\right)^{k_{2}}\left(X_{1}^{-}\right)^{k_{1}} \otimes v_{0}$
$c_{k_{1}, k_{\underline{2}}}^{\prime}=(-1)^{k_{1}+k_{2}} c^{\prime 2}\binom{m}{k_{1}}_{q}\binom{m}{k_{2}}_{q} \frac{\left[(\lambda+\rho)\left(H_{1}\right)\right]}{\left[(\lambda+\rho)\left(H_{1}\right)-k_{1}\right]} \frac{\left[(\lambda+\rho)\left(H_{3}\right)\right]}{\left[(\lambda+\rho)\left(H_{3}\right)-k_{2}\right]}$
and for $q \rightarrow 1$ gives the correct formula in the same situation [24, 32] (cf formula (8.42)).
4.7.

Let $\mathcal{G}=D_{l}, l \geqslant 4$, and let $\alpha_{i}, i=1, \ldots, l$ be the simple roots, so that

$$
\left(\alpha_{i}, \alpha_{j}\right)= \begin{cases}-1 & |i-j|=1, i, j \neq l \tag{29}\\ -1 & i j=l(l-2) \\ 2 & i=j \\ 0 & \text { otherwise } .\end{cases}
$$

Let us consider roots $\beta_{i} \in \Delta^{\dagger}$ given by $\beta_{i}=\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{l}$, where $1 \leqslant i \leqslant l-3$. Note that β_{i} is a root of the subalgebra D_{l-i+1} with simple roots $\alpha_{i}, \alpha_{i+1}, \ldots, \alpha_{i}$. This means that, in order to account for all roots β_{i}, it is sufficient to give the formula for the singular vector corresponding to the root $\tilde{\beta}=\beta_{1}=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{1}$. (This is not the highest root of D_{1}.)

Let us have condition (7) fulfilled for $\tilde{\beta}$, but not for any subroot γ of $\tilde{\beta}\left(\gamma^{\prime} \in \Delta^{+}\right.$ is a subroot of $\gamma^{\prime \prime} \in \Delta^{+}$if $\gamma^{\prime \prime}-\gamma^{\prime}$ may be expressed as a linear combination of simple roots with non-negative coefficients):

$$
\begin{equation*}
\left[\left(\lambda+\rho, \tilde{\beta}^{\vee}\right)-m\right]_{q}=\left[\lambda\left(H_{\tilde{\beta}}\right)+l-m\right]_{q}=0 . \tag{30}
\end{equation*}
$$

Now one can check that the singular vector is given by

$$
\begin{align*}
v^{\tilde{\beta}, m}=\sum_{k_{1}=0}^{m} \cdots & \sum_{k_{l-1}=0}^{m} \tilde{c}_{k_{1}, \ldots, k_{l-1}}\left(X_{1}^{-}\right)^{m-k_{1}} \cdots\left(X_{l-3}^{-}\right)^{m-k_{l-3}}\left(X_{l-1}^{-}\right)^{m-k_{l-1}} \\
& \times\left(X_{l}^{-}\right)^{m-k_{l-2}}\left(X_{l-2}^{-}\right)^{m}\left(X_{l}^{-}\right)^{k_{l-2}}\left(X_{l-1}^{-}\right)^{k_{l-1}}\left(X_{l-3}^{-}\right)^{k_{l-3}} \cdots\left(X_{1}^{-}\right)^{k_{1}} \otimes v_{0} \tag{31a}
\end{align*}
$$

$$
\tilde{c}_{k_{1}, \ldots, k_{l-1}}=(-1)^{k_{1}+\cdots+k_{l-1}} \tilde{c}^{l}\binom{m}{k_{1}}_{q} \cdots\binom{m}{k_{l-1}}_{q}
$$

$$
\times \frac{\left[(\lambda+\rho)\left(H^{1}\right)\right]}{\left[(\lambda+\rho)\left(H^{1}\right)-k_{1}\right]} \cdots \frac{\left[(\lambda+\rho)\left(H^{l-3}\right)\right]}{\left[(\lambda+\rho)\left(H^{l-3}\right)-k_{l-3}\right]}
$$

$$
\begin{equation*}
\times \frac{\left[(\lambda+\rho)\left(H_{l-1}\right)\right]}{\left[(\lambda+\rho)\left(H_{l-1}\right)-k_{l-1}\right]} \frac{\left[(\lambda+\rho)\left(H_{l}\right)\right]}{\left[(\lambda+\rho)\left(H_{l}\right)-k_{l-2}\right]} \quad \tilde{c}^{l} \neq 0 \tag{316}
\end{equation*}
$$

where $H^{s}=H_{\beta_{4}}=H_{1}+H_{2}+\cdots+H_{s}$. Note that if we set formally $l=3$ in these formulae they will coincide with the formulae for $A_{3} \cong D_{3}$, in particular in the form (28), identifying the roots $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)_{D_{3}} \rightarrow\left(\alpha_{2}, \alpha_{1}, \alpha_{3}\right)_{A_{3}}$.

4.8.

The singular vectors given in (15), (19), (22), (25), (27), (28) and (31) are in the generic situation, i.e. when condition (7) is fulfilled for β, but not for the subroots of β. Let us consider formula (15) or (27) for $l=2$ when
$\left[\left(\lambda+\rho, \alpha_{j}^{\vee}\right)-m_{j}\right]_{q_{j}}=0 \quad j=1,2 \quad m_{j} \in \mathbb{Z}_{+} \quad m_{1}+m_{2} \in \mathbb{N}$
i.e. condition (14) is fulfilled in addition for at least one of the roots α_{1}, α_{2}, and for the other root it may be broken only in the sense that the corresponding number m_{k} may be equal to zero. Then formulae (15a) and (15b) reduce to

$$
\begin{align*}
v^{\beta, m} & =c_{1}\left(X_{1}^{-}\right)^{m_{2}}\left(X_{2}^{-}\right)^{m}\left(X_{1}^{-}\right)^{m_{1}} \otimes v_{0} \tag{33a}\\
& =c_{2}\left(X_{2}^{-}\right)^{m_{1}}\left(X_{1}^{-}\right)^{m}\left(X_{2}^{-}\right)^{m_{2}} \otimes v_{0} \tag{33b}\\
& =\left(X_{2}^{-}\right)^{m_{1}} \sum_{k=0}^{m_{2}} c_{m_{2} k}^{1}\left(X_{1}^{-}\right)^{m_{2}-k}\left(X_{2}^{-}\right)^{m_{2}}\left(X_{1}^{-}\right)^{k+m_{1}} \otimes v_{0} \tag{33c}\\
& =\left(X_{1}^{-}\right)^{m_{2}} \sum_{k=0}^{m_{1}} c_{m_{1} k}^{2}\left(X_{2}^{-}\right)^{m_{1}-k}\left(X_{1}^{-}\right)^{m_{1}}\left(X_{2}^{-}\right)^{k+m_{2}} \otimes v_{0} \tag{33d}
\end{align*}
$$

where $m=m_{1}+m_{2} \in \mathbb{N}, c_{m_{2} k}^{1}, c_{m_{1} k}^{2}$, respectively, is given by ($15 c$) with λ replaced by the Weyl dot reflection shifted highest weight $\lambda-m \alpha_{1}=\varepsilon_{1} \cdot \alpha_{1}, \lambda-m \alpha_{2}=s_{2} \cdot \alpha_{2}$, respectively, i.e. with $\lambda\left(H_{i}\right)+1$ replaced by $-m_{i}, i=1,2$, respectively. [Wey] dot reflections $w \cdot \lambda$ are defined through the ordinary Weyl reflections $w(\lambda)$ by $w \cdot \lambda \equiv$ $w(\lambda+\rho)-\rho$, where $w \in W, W$ is the Weyl group of \mathcal{G} generated by the reflections s_{i} corresponding to the simple roots α_{i}, the ordinary Weyl reflections being defined by $s_{\alpha}(\lambda) \equiv \lambda-\left(\lambda, \alpha^{v}\right) \alpha$, for any $\alpha \in \Delta$.] The four expressions in (33) are used to prove commutativity of certain embedding diagrams, in particular the hexagon diagram of $\mathrm{U}_{q}(\mathrm{sl}(3, \mathbb{C}))[23]$ (or, for $q=1$, the hexagon diagram of $\mathrm{sl}(3, \mathbb{C})[25]$)

If (32) holds then formula (19a) reduces to
$v^{\beta, m}=c_{1}^{\prime}\left(X_{1}^{-}\right)^{m-m_{1}}\left(X_{2}^{-}\right)^{m}\left(X_{1}^{-}\right)^{m_{1}} \otimes v_{0} \quad m=(1+\varepsilon) m_{1}+m_{2}$
formula (22a) reduces to

$$
\begin{equation*}
v_{\varepsilon=1}^{\beta, m}=c_{2}^{\prime}\left(X_{2}^{-}\right)^{2 m-m_{2}}\left(X_{1}^{-}\right)^{m}\left(X_{2}^{-}\right)^{m_{2}} \otimes v_{0} \quad m=m_{1}+m_{\overline{2}} \tag{34b}
\end{equation*}
$$

formula (25a) reduces to

$$
\begin{equation*}
v^{\beta, m}=c_{3}^{\prime}\left(X_{2}^{-}\right)^{3 m-m_{2}}\left(X_{1}^{-}\right)^{m}\left(X_{2}^{-}\right)^{m_{2}} \otimes v_{0} \quad m=m_{1}+m_{2} . \tag{34c}
\end{equation*}
$$

Analogously let us consider formula (28) or (27) for $l=3$ in the case when condition (7) is also fulfilled for at least one of the simple roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$, i.e.
$\left[\left(\lambda+\rho, \alpha_{j}^{\vee}\right)-m_{j}\right]_{q_{j}}=0 \quad j=1,2,3 \quad m_{j} \in \mathbb{Z}_{+} \quad m=m_{1}+m_{2}+m_{3} \in \mathbb{N}$.

Denoting $m_{i j}=m_{i}+m_{j}$ we write down the reduction of formula (27a) or (28a):

$$
\begin{align*}
v^{\beta, m} & =c_{1}^{\prime}\left(X_{1}^{-}\right)^{m_{23}}\left(X_{2}^{-}\right)^{m_{3}}\left(X_{3}^{-}\right)^{m}\left(X_{2}^{-}\right)^{m_{12}}\left(X_{1}^{-}\right)^{m_{1}} \otimes v_{0} \tag{36a}\\
& =c_{2}^{\prime}\left(X_{1}^{-}\right)^{m_{23}}\left(X_{3}^{-}\right)^{m_{12}}\left(X_{2}^{-}\right)^{m}\left(X_{3}^{-}\right)^{m_{3}}\left(X_{1}^{-}\right)^{m_{1}} \otimes v_{0} \tag{36b}\\
& =c_{3}^{\prime}\left(X_{3}^{-}\right)^{m_{12}}\left(X_{2}^{-}\right)^{m_{1}}\left(X_{1}^{-}\right)^{m}\left(X_{2}^{-}\right)^{m_{23}}\left(X_{3}^{-}\right)^{m_{5}} \otimes v_{0} \tag{36c}
\end{align*}
$$

and several other expressions which analogously to (33c) and (33d) use the polynomials corresponding to roots which are the sum of two simple roots (and some expressions which use the trivial commutativity $\left[X_{1}^{-}, X_{3}^{-}\right]=0$).

5. Singular vectors for q a root of unity

Let \mathcal{G} be an arbitrary simple complex Lie algebra again. Let q be a root of unity. Then all Verma modules V^{λ} are reducible. For each V^{λ} there exist singular vectors for arbitrary $\lambda \in \mathcal{H}^{*}$. They are given explicitly by [23]

$$
\begin{equation*}
v^{k_{1}, \ldots, k_{1}}=\prod_{j=1}^{l}\left(X_{j}^{-}\right)^{k_{j} N_{j}} \otimes v_{0} \quad k_{j} \in \mathbb{Z}_{+}, \sum_{j=1}^{l} k_{j}>0 \tag{37}
\end{equation*}
$$

where $N_{j} \in \mathbb{N}+1$ are the smallest integers such that $q_{j}^{N_{j}}=1, j=1, \ldots, l$. The factors $\left(X_{j}^{-}\right)^{k_{j} N_{j}}$ up to a sign belong to the centre of $\mathrm{U}_{q}(\mathcal{G})$ [23]. Namely, let $\alpha_{i}, \alpha_{j}, i \neq j$ be two simple roots with equal length so that $a_{i j} \neq 0$. Then using Serre relationships (3) and $q_{i}=q_{j}$ we obtain

$$
\begin{equation*}
X_{i}^{-}\left(X_{j}^{-}\right)^{k}=-[k-1]_{q_{j}}\left(X_{j}^{-}\right)^{k} X_{i}^{-}+[k]_{q_{j}}\left(X_{j}^{-}\right)^{k-1} X_{i}^{-} X_{j}^{-} . \tag{38}
\end{equation*}
$$

Thus if $q_{j}=\mathrm{e}^{2 \pi \mathrm{i} / N_{j}}$ we have

$$
\begin{equation*}
X_{i}^{-}\left(X_{j}^{-}\right)^{k_{j} N_{j}}=(-1)^{k_{j}}\left(X_{j}^{-}\right)^{k, N_{j}} X_{i}^{-} \tag{39}
\end{equation*}
$$

In particular, the elements $\left(X_{j}^{-}\right)^{2 N_{j}}$ belong to the centre of $\mathrm{U}_{q}(\mathcal{G})$. It is clear that the Verma submodules of V^{λ} corresponding to the singular vectors in (37) are explicitly given by $V^{\lambda^{\prime}}$ with $\lambda^{\prime}=\lambda-\sum_{j=1}^{l} k_{j} N_{j} \alpha_{j}$.

Besides this there exist other singular vectors if the highest weight λ obeys the condition (7). Consider $\beta \in \Delta^{+}, \beta=\sum n_{j} \alpha_{j}$, and let $N_{\beta} \in \mathbb{N}+1$ be the smallest integer such that $q_{\beta}^{N_{\beta}}=1$, with q_{β} as in (5). Let us have condition (7) fulfilled for β with some $m \in \mathbb{N}$ but not fulfilled for any subroots of β. Let $k, n \in \mathbb{Z}_{+}, k+n>0$, $n<N_{\beta}$ be such that $m=k N_{\beta}+n$. Then we have the following expression for the singular vector:

$$
\begin{equation*}
v^{\beta, n, k}=\left(\mathcal{P}_{n}^{\beta} \mathcal{P}_{N_{\beta}-n}^{\beta}\right)^{k} \mathcal{P}_{n}^{\beta} \otimes v_{0} \tag{40}
\end{equation*}
$$

where $\mathcal{P}_{u}^{\beta}\left(X_{1}^{-}, \ldots, X_{l}^{-}\right)$is a homogeneous polynomial as in (8). For explicit expressions of \mathcal{P}_{n}^{β} we refer to formulae (11), (15), (19), (22), (25), (27), (28), (31), with m replaced by u. It is clear that the submodules of V^{λ} corresponding to the singular vectors in (40) are explicitly given by $V^{\lambda^{\prime}}$ with $\lambda^{\prime}=\lambda-\sum_{j=1}^{l}\left(k_{j} N_{j}+n n_{j}\right) \alpha_{n} j$.

In summary, the singular vectors for q a root of unity which are given by (40) are obtained by combining the factors $\prod_{j=1}^{l}\left(X_{j}^{-}\right)^{k_{j} N_{j}}$ (from (37)) with the polynomials \mathcal{P}_{m}^{β} (from (8)) giving the singular vectors in the generic case, however with the degree m restricted by N_{β}.

Acknowledgments

The author would like to thank T Eguchi, M Jimbo, V G Kac, P P Kulish, G Lusztig and N Yu Reshetikhin for discussions. This work was partially supported by the

Ministry of Science of Bulgaria, Grants 3 and 403, and by the Alexander von Humboldt Foundation.

References

[1] Drinfeld V G 1985 Dokl. Akad. Nauk SSSR 283 1060-4; (Engl. transl. 1985 Sov. Math. Dokl. 32 254-8); 1986 Proc. ICM (MRSI: Berkeley)
[2] Reshetikhin N Yu 1987 Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links I, II. Preprint LOMI Leningrad E-4-87, E-17-87
[3] Kirillov A N and Reshetikhin N Yu 1988 Representations of the algebra $U_{q}(s l(2)), q$-orthogonal polynomials and invariants of links Preprint LOMI Leningrad E-9-88
[4] Faddeev L D 1984 Integrable models in $1+1$ dimensional quantum field theory Les Houches Lectures 1982 (Amsterdam: Elsevier)
Kulish P P and Sklyanin E K 1982 Lecture Notes in Physics vol 151, (Berlin: Springer) pp 61119
[5] Kulish P P and Reshetikhin N Yu 1981 Zap. Nauch. Semin. LOMI 101 101-10; (Engl. transl. 1983 J. Sov. Math. 23 2435-41)
[6a] Sklyanin E K 1982 Funkts. Anal. Prilozh. 16 27-34 (Engl. Transl. 1982 Funct. Anal. Appl. 16 263-70); 1983 Funkts. Anal. Prilozh. 17 34-48 (Engl. Transl. 1982 Funct. Anal. Appl. 17 274-88)
[6b] Sklyanin E K 1985 Usp. Mat. Nauk 40214 (in Russian)
[7] Faddeev L D and Takhtajan L A 1985 Preprint LPT Panis-VII; 1986 Lecture Notes in Physics 276 (Berlin: Springer) pp 166-79
Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1988 Algebraic Analysis vol 1 (New York: Academic) p 129; 1989 Alg. Anal. 1 178-206
Jimbo M 1989 Int. J. Mod. Phys. A 4 3759-77
Takhtajan L A 1989 Adv. Stud. Pure. Math. 19 435-57
de Vega H J 1989 Int. J. Mod. Phys. A 4 2371-465
[8] Jimbo M 1985 Lett. Math. Phys. 10 63-9; 1986 Lett. Math. Phys. 11 247-52
[9] Rosso M 1987 C. R. Acad. Sci. Paris Serie I 305 587-90
Woronowicz S L 1987 Commun. Math. Phys. 111 613-65
[10] Rosso 1987 Commun. Math. Phys. 117 581-93
Lusztig G 1988 Adv. Math. 70 237-49
[11] Verdier J-L 1987 Séminaire Bourbaki No 685 Astérisque 152-3 305
[12] Reshetikhin N Yu and Semenov-Tian-Shansky M A 1990 Lett. Math. Phys. 19 133-42
[13] De Concini C and Kac V G 1990 Representations of quantum groups at roots of 1 Preprint Pisa Scuola Normale Superiore math No 75
[14] Date E, Jimbo M, Miki K and Miwa T 1990 R-matrix for cyclic representations of $\mathrm{U}_{\mathbf{q}}\left(\mathrm{sl}(3, \mathbb{C})^{(1)}\right)$ at $q^{3}=1$ Preprint Kyoto RIMS-696; 1990 Cyclic representations of $\mathrm{U}_{q}(\mathrm{sl}(n+1, \mathbb{C}))$ at $q^{N}=1$ Preprint Kyoto RIMS-703
[15] Lusztig G 1988 Contemp. Math. 82 59-77; 1990 J. Algebra 131 466-75
[16] Alvarez-Gaumé L, Gómez C and Sierra G 1989 Phys. Lett. 220B 142-52; 1989 Nucl. Phys. B 319 155-86; 1990 Nucl. Phys. B 330 347; 1989 Preprint CERN-TH.5540/89 to appear in the Memorial Volume of Vadim Knizhnik ed L Brink, D Friedan and A M Polyakoy (Singapore: World Scientific)
[17] Moore G and Reshetikhin N Yu 1989 Nucl. Phys. B 328 557-74
Moore G and Seiberg N 1989 Commun. Math. Phys. 123 177-254
[18] Witten E 1990 Nucl. Phys. B 330285
[19] Ganchev A Ch 1989 Phys. Lett. 233B 374-82
Furlan P, Ganchev A Ch and Petkova V B 1990 Preprint INFN Trieste INFN/AE-89/15
[20] Gómez C and Sierra G 1990 Phys. Lett. 240B 149-57; 1990 The quantum symmetry of rational conformal field theories Preprint Geneva University, Department of Theoretical Physics
[21] Reshetikhin N Yu and Smirnov F A 1990 Commun. Math. Phys. 131 157-77
[22] Gervais J-L 1990 Commun. Math. Phys. 130 257-83; 1990 Phys. Lett. 243B 85-92; 1990 Preprint LPTENS 90/13
[23] Dobrev V K 1989 ICTP Trieste Internal Report IC/89/142 to appear in the Proc. Int. Group Theory Conference (St. Andrews July/August 1989) London Math. Soc. Lecture Note Series
(Cambridge: Cambridge University Press)
[24] Dobrev V K 1985 J. Math. Phys. 26 235-51; 1985 Lett. Math. Phys. 9205
[25] Dobrev V K 1985 Conf. on Algebraic Geometry and Integrable Systems (Oberwolfach July 1984) Preprint ICTP Trieste IC/85/9
[26] Dobrev V K 1986 Proc. XIII Int. Conf. on Differential-Geometric Methods in Theoretical Physics (Shumen, 1984) ed H D Doebner and T D Palev (Singapore: World Scientific) pp 348-70
[27] Dobrev V K 1986 Lett. Math. Phys. 11 225-34
[28] Dobrev V K 1989 Proc. 19th Johns Hopkins Workshop on Knots, Topology and Field Theory, (Florence, 1989) ed L Lusanna (Singapore: World Scientific) pp 539-47
[29] Dobrev V K 1990 Proc. Quantum Groups Workshop, (Clausthal, 1989) 370 ed H-D Doebner and J-D Hennig Lecture Notes in Physics (Berlin: Springer) pp 107-17
[30] Dobrev V K 199X Int. Coll. Group Theoretical Methods in Physics (Moscow, Jure 1990) to appear
[31] Dobrev V K 199X Lecture at the Yukawa International Seminar (Kyoto, May 1990) Proc. Prog. Theor. Phys. Suppl. 102 137-58
[32] Dobrev V K 1988 Rep. Math. Phys. 25 159-81
[33] Malikov F G, Feigin B L and Fuchs D B 1986 Funkts. Anal. Prilozh, 20 (2) 25-37 (Engl. transl. Funct. Anal. Appl. 20 103-13)
[34] Lusztig G 1990 Lectures at the 1990 Yukawa International Seminar (Kyoto) Prog. Theor. Phys. Suppl. 102 175-201
[35] Abe E 1980 Hopf Agebras (Cambridge Tracts in Mathematics 74) (Cambridge: Cambridge University Press)
[36] Bernstein I N, Gel'fand I M and Gel'fand S I 1971 Funkts. Amal. Prilozh, 5 N1 1-9; 1971 (Engl. transl. Funkt. Anal. Appl. 5 1-8)
[37] Kac V G and Kazhdan D 1979 Adv. Math. 34 97-108
[38] Kac V G 1983 Infinite-dimensional Lie Algebras. An Introduction (Progress in Mathematics 44) (Boston: Birkhäuser)
[39] Masuda T, Mimachi K, Nakagami Y, Noumi M and Ueno K 1988 C. R. Acad. Sci. Paris Serie I 307 559-64
Koornwinder T H 1989 Nederrl. Akad. Wetensch. Proc. A 92 97-117
Nuomi M and Mimachi K 1990 Commun. Math. Phys. 128 521-31
Klymik A U and Groza V A 1989 Preprint Kiev ITP-89-37P (in Russian)
Klymik A U 1990 Talk at the International Colloquium on Group Theoretical Methods in Physics (Moscow June 1990)

[^0]: \dagger Alexander von Humboldt Foundation fellow; permanent address: Bulgarian Academy of Sciences, Institute of Nuclear Research and Nuclear Energy, 1784 Sofia, Bulgaria.

