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Abstract. In the 'prescnt article we give explicit formulae for singular vectors of
Verma modules over Ug(G). We give the general formula for G = Ay, for some cases
when ¢ = Dy, and for some rank-two subalgebras of G # A, , Dn. For this we use a
special basis of Ug(G™ ), where ¢~ is the negative root subalgebra of G, which was
introduced in our earlier work on the case g = 1, This basis seems more economical
than the Poincaré—Birkhoffi-Witt type of basis used by Malikov, Feigin and Fuchs for
the construction of singular vectors of Verma modules in the case ¢ = 1. Furthermore
this basis turns out to be part of a general basis introduced recently for other reasons
by Lusztig for Uy (B™), where B~ is a Borel subalgebra of ¢.

1. Introduction

We consider the g¢-deformation Uq(g) of the universal enveloping algebras U{G) of
simple Lie algebras G which are also called quantum groups [1] or quantum universal
enveloping algebras (2, 3]. They arose in the study of the algebraic aspects of quantum
integrable systems [4-6]. For recent reviews we refer to {7]. In [6b] for G = si(2,C)
and in [1, 8] in general it was observed that the algebras U () have the structure
of a Hopf algebra. This new algebraic structure was further studied in [9-11]. The
representations of U (G) were considered in [3, 5, 9, 12] for generic values of the
deformation parameter. In fact all results from the representation theory of G carry
over to the guantum group case. This is not so, however, if the deformation parameter
g 15 a Toot of unity. Thus this case is very interesting from the mathematical point
of view (see, e.g., {13-15]). Lately, quantum groups were intensively applied {with
special emphasis on the case when ¢ is a root of unity) in rational conformal field
theories [16-21] and in two-dimensional quantum gravity [22].

In (23] we began the study of the representation theory of U (G) when the defor-
mation parameter g is a root of unity. We consider the induced highest weight modules
(HWM) over U (G), which are also called Verma modules. They all are reducible for
¢ =1,N € N+ 1. In [23] we adapted to U,(G) the previously developed approach
of multiplet classification of Verma modules over (infinite-dimensional) (super-) Lie
algebras [24-27]. In [28-30] we gave the characier formulae for the irreducible HWM

over U, (G) when G =5sl(3,C).
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156 V K Dobrev

These developments use results on the embeddings of the reducible Verma modules.
These embeddings are realized by the so-called singular vectors (or nuil or ezxfremal
vectors). In [23] we gave the general formula for the singular vectors which, however,
was not so explicit. Some explicit formulae for singular vectors of Verma modules over
U,(A,} were presented in {31].

In the present article we give explicit formulae for the singular vectors of Verma
modules over U (G). We give the general formula for ¢ = 4, for some cases when
¢ = D, and for some rank-two subalgebras of G # A,,D,. As in (23] and [31] we
use a spec1al basis of U, (G™), where G~ is the negative root subalgebra of G, which
was introduced in our earlier work on the case q = 1 [24, 32). This basis seems more
economical than the Poincaré—Birkhoff-Witt type of basis used by Malikov, Feigin and
Fuchs [33] for the construction of singular vectors of Verma modules in the case g = 1.
Furthermore our basis turns out to be part of a general basis introduced recently for

thow moncnme ho Tueotio [24) o0 1T {R=Y whars B— iz 2 Baoral suhaleshrs of G
Olhier Teasons OY 4/USEUE (05 10T U g\~ Jy WHEIE O iS5 & DUITL Sulbasgiula Ol .

2. Definitions

Let G be any complex simple Lie algebra; then U (G) is defined [1, 8] as the associative
algebra over C with generators X, H,,i=1,...,I = rank § and with relationships
— ] — +
(Hi, H;j=10 [H;, X = £a,; X; (1)
O L
=5 % % = s
[ X ] 6 1/2 ~1/2 = 6:'_;5 [H;’]q,— 9= q(a i)/ (2)
i %
DXEVXFXETE =0 i (3)
k=o

where (a;;) = (2(a;, a;)/(e;, a;)) is the Cartan matrix of G, (-, -) is the scalar product

of the roots normalized so that for the short simple roots o we have (a,a) = 2,
n= l - at'j,
oo = 1), (1 (4a)
k) = H.0n - k]! Mot = 1My el
q q g
mf2 _ ,—-mjf2 : ; .
fnly = Lo L = Snhml/D) ST bz pre o (4b)
: gt — g sinn(n/ ) S @7
g = glove) = g, (4¢c)

This definition is also valid for arbitrary affine Lie algebras [1]. Furthermore we shall
omit the subscript ¢ in [m], if no confusion can arise. Note also that instead of ¢ some

PR
authors use ¢ =4q° For g— 1, (h —_ m we recover the commautation rp]ahnnthne

from (1) and (2) and Serre’s relationships from (3) in terms of the Chevalley generators
H, Xt The elements H, span the Cartan subalgebra X of G, while the elements
X; * generate the subalgebras G*. We shall use the standard decomposltlons G =

’H @ ﬁgaAgf, CtraH®GA = AY U A~ is the root systemm of G, AT, A™, the
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sets of positive, negative, roots, respectively. We vecall that H; correspond to the
sitnple roots «; of G, and if 8 = 3", n,ay, then Hy = 5, n, H; corresponds to 3. The

elements of G which span gﬁ, (recall that dim Gs = 1), will be denoted by X;. These
Cartan—Weyl generators are normalized so that

(X5 X_g] = [Hgl,, for B € At g5 = ¢#P/2, (5)

In [6b] for G = s}(2,C) and in [1, 7] in general it was observed that the algebra U, {G)
is a Hopf algebra [35]. However, we shall not use this and consequently we shall not
introduce the corresponding structure.

3. Highest weight modules over U(G)

The HWM V over U (G) (2] are given by their highest weight A € H* and highest
weight vector vy € V such that

Xtvy=0 i=1,...,0  Hvy=XH), HeH. (6)

We start with the induced HWM or Verma modules V* such that V* = U (6)®y, (8)%
= U,(67) ® vy, where B = BY, B = H & G* are Borel subalgebras of G. (Then
the algebras U (B*) with generators H,, X are Hopf subalgebras of U, (G) [2].) The
representation theory of V* parallels the theory of Verma modules V(A) over . (V(A)
is defined as the HWM over G induced from the one-dimensional representations of B.)
In particular, we shall consider the irreducible HWM L, over U (G) as factor modules
VA/I*, where I* is the maximal submodule of V*.

We recall several facts from [23, 31}. If ¢ is not a root of unity then the Verma
module V? is reducible iff there exists a root 3 € A* and m € N such that

[(A+p,8")—m], =0 Y =2p/(8,8) (7

holds, where p = %ZaeA+ a. (Condition (7) is the generalization of the Verma
modules reducibility conditions for finite-dimensional G [36] and for affine Lie algebras
[37).) If (7) holds then there exists a vector v, € V?, called a singular vector, such that
v, F g, Xto,=0,i=1,... 1, Hu, = (AMH)—mB{H))v,, H € H. The space U(G~)v,
is a proper submodule of ¥* isomorphic to the Verma module V*~™% = (™) @ v},
where v is the highest weight vector of V™™, the isomorphism being realized by
v, — 1@ v}. The singular vector is given by [24, 25, 23]

vy =P =PE(XT LX) @, (8)

where P2 is a homogeneous polynomial in its variables of degrees mn,, where n, € Z,
come from 8 = Y n,a,, where a; is the system of simple roots. The polynomial ’P,'ﬂn
is unique up to a non-zero multiplicative constant.

The Verma module V* contains a unique proper maximal submodule I*. Among
the HWM with highest weight A there is a unique irreducible one, denoted by L, | i.e.

L, =V (9)
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If V* is irreducible then L, = V*. Thus we discuss L, for which vV is reducible.
Consider V* reducible with respect to every simple root (and thus to all positive
roots):

[+ poad) = my, = [(WNH) +1-m], =0 i=1...0 (10)

where we have used p(a)) = 1. Then L, is a finite-dimensional highest weight module
over G [3, 5, 10}. If we restrict G to its compact real form G, then the set of all
L, coincides with the set of all finite dimensional unitary irreducible representations
of G.. (In the case of affine Lie algebras, L, with (10) holding are the so-called
integrable HWM [38].) An important class of the case when (10) holds are the so-

called fundamental representations L, , i = 1,..., characterized by (z\‘-,a}’) = &,
ie. (A +p,0)) = 146, = m;(X). The representations of U (&) are deformations

of the representations of (G}, and the latter are obtained from the former for ¢ — 1
[10].

Recently, De Concini and Kac [13] have given a formula for the determinant of
the contravariant form on the Verma modules V*. This result implies, in the usual
way, the description of irreducible subquotients of V*. In particular, this confirms
our results on the embeddings of the reducible modules V* {23], part of which were
summarized earlier.

4. Singular vectors for generic g

4.1. The case of the simple rools

Let 8 = a;; then from expression (8) we have
V= (X)) @ g (11)

We obtain, using (2),

m—1
XL (™) = 3 (K k), ()
k=0

= (XK Y - 2K, = ) el - m . (12)
k=0

If v is a singular vector we should have
0= XFoim = (X (X7 )" @ = (X7l D) —m b 1)y @ (13)

(Note that Xv/™ = 0, for k # j.) If q; = q'23-23}/2 is not a root of unity (13) gives
just condition (7).)
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4.2.

As another example we take a root § which is the sum of two simple roots of equal
length: 8= oy + ay, (6,8) = (2;,¢;),§ = 1,2, B¥ = af + . This case is relevant
for Uy(G) for § = 4,,n>1,6=8B,,n>26=C,n>2G=2D,n>3,
G = Eg,E;, E3, F,. For G = B, the two roots a,,a, are long, for G = C,, they are
short, while for G = F, there is one case when they are long and one case when they
are short. Let us have condition (7) fulfilled for 4, but not for a;,j = 1,2:

[(A+p,8%)=m], =[MHg)+2-m], =0  gy=¢q, =¢, (l4a)
(A +p,0]) —m'],, #£0 i=1,2 VYm'ezZ,. (14b)

{The reason for the appearance of Z, in (14b) instead of N will become clear in
subsection 4.6.) Then one can check that the singular vector is given by [23]

V= N e (X)X )X @ v (15a)
=3 2 (XS )THXT)™MXG ) @ (15)
k=0

+H

= (=1}¢ fm\ (A(H) + 1]9-‘
PNk MH) + 1,

LM
1]
—
(&
&3
o

Comk
For this check we also need the following formula invelving the g-hypergeometric
function ,Fy':

rits

k] ![s! ks 2

WFi(—k, 85 +1—p P 8/%) = 6P°[k+s}!q (16a)
where

Fla big sy = 0 [a+n]![b+n]![c]!2n (165

PO BOTE L Tl +nllfn] A

néely

Such special g-functions are discussed in [3, 39].

For ¢ — 1 formula (15) goes to the correct formula in the same situation [24-32] (cf
formulae (8.40) and {8.41)). One should notice that this is not the ordered Poincaré-
Birkhoff-Witt type of basis. This basis invoives only simple root space vectors and
it was used in our earlier work in the case ¢ = 1 [24-32]. We think that this basis is
more economical for the construction of singular vectors. It is very interesting that
our basis turns out to be part of a general basis introduced recently for other reasons
by Lusztig [34] for U (B~).
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4.8

Let 8 = @, + a,, where a; is a long simple root and «, a short simple root (¢f {17a))
so that

ap,=-1  ay=-l-¢ =12 g¢=¢% g=¢ (17a)
B¥=F=(1+e)af +o3 4 =1 (17b)
and let

[(A+p8Y)—ml,, = M(H)Q +e) + MH)+2+e—m], =0 (18a)
[(A+pa))-m], #£0  j=12Ym €Z,. (185)

The case € = 1 is relevant for G = B,,C,, F,, while the case ¢ = 2 is relevant for
G = G,. Now one can check that the singular vector is given by

VA =Y e (X)X MDY @ (19a)
k=0

Al = (et (™ MH,) +1],,

we = (1) (k)h DH) +1- 4], (130)

44

Let 8 = a; + 2a,, where &}, a, are as in the previous case (a long and a short simple
root), cf (17a), so that

BY =eB/2=e(1+¢€)a) /2 +cay 95 = 9%/ (20)
and let

[(A+p,8Y)—m], = [e(1 +€)A(H,)/2+ eA(H,) + (3 +€)/2 - m],,
= [(1+€)MH,) +2MHp) + (3 +¢) - 2m/e], = 0 (21a)

(A +pay—ml, #0 j=12 Vw €Z, (21b)

Now one can check that the singular vector for € = 1 is given by

2m
v = L (X)X © v (220)
k=0
N om\  [AH,) + 1)
2l = (—1)kc21( : )qm (22)
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1.5

Let G = Gy, let § = ay + 3a,, where o, is the long and «, the short siraple root, cf
(17a), so that

B¥=B3=af+a;  go=¢° (23)
and let

[(A+p.8") —m], = [MH,) + AH,) +2-m], =0 (24a)

[(A+pa))-m], #0 =12  Vm' €Z,. (24b)

Now one can check that the singular vector is give

WP = 3 (X)X (X7 ) @ v (25a)
k=0
) 3m\ M) + 1y
= (“1)'“631( k )qa N(H,) + 1 —T!:]qz‘ (25¢)

4.0.

Let G = Aj and let oy,i = 1,...,1 be the simple roots, so that (a;,a;) = —1 for
I — k| =1 and (ay, &) = 28;; for |j — k| # 1. Then every root 3 € A* is given by
G =B, =oytapytot o where 1 €ig!l, 1 £ ng!{—i+ 1. Recall that a
root & € A is called the highest root of A if @ + 8 is not a root for any § € A¥. For
A, the highest root is given by & = o, + a,+ -+ a;. Thus every root § € A% is the
highest root of a subalgebra of A;; explicitly g;,, is the highest root of the subalgebra
A,, with simple roots o, o, ..., &4 ,_;. This means that it is sufficient to give the
formula for the singular vector corresponding to the highest root.
Let us have condition (7) fulfilled for &, but not for any other positive root:

[(A4p,6¥) = m], = [MHg) +1—m], =0 (26a)
[(A4p8%) —m], = M) +n—m], #0  n#l Y €l,. (268)

Now one can check that the angular vector is given by

am S f: (X—)m—kx X m—kp_;
v Chyyokioy 1 ( 1—1)

ky=0 kioq1=0

« (X,_)m(X;__l)h_l°--(X1_)h®v0 (27a)
= (—1)ertbRi my ™
Cry, ki '-( 1) A (kl)g (kl—l)q
(A + p)(HY) (A + p)(H' )] d#0 (2Th)

[(A+p)YH) = k)] T [(A+p)(H!=E) = Ky_y]
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where H* = Hy = Hy+ Hy + -+ H,. Note that for I = 2 formula (27) coincide
with formula (15) with ¢; = ¢. Formula (27) for { = 3 may be wnitten equivalently as

= Z Z Ch 1 (XD YR (X5 )™ (XS Y™ (X5 ) (KT Yo @ v, (28a)
ky=0k,=0
At oHY] O+ p)(H)]
c 1\E1tka 12 m m [( 1 3 28b
b= (=D (k)q \kz)q{(/‘w-fp)(ha)-kl} [0+ 7)(Hs) - K (28%)

and for ¢ - 1 gives the correct formula in the same situation [24, 32] (cf for-
mula (8.42)).

4.7
Let G = D, 1 2 4, and let a;,7 = 1,...,1 be the simple roots, so that
1 li—gl=1#1
-1 if=I({-2
(ai:aj) = .J . ( ) (29)
2 1=j
0 otherwise.

Let us consider roots §; € AT given by §; = o; + e+ -+, where 1 L1 € i3,
Note that §; is a root of the subalgebra D, ,,, with 31mple roots @, &y, ..., 0.
This means that, in order to account for all roots §;, it is sufficient to give the formula
for the singular vector corresponding to the root ,3 By =o; +as+- -+ e (This
is not the highest root of 1,.}

Let us have condition (7) fulfilled for 2, but not for any subroot y of § (v € A+
is a subroot of v € A%t if 4/ — 4’ may be expressed as a linear combination of simple
roots with non-negative coefficients):

[(A+p,8Y) = m], = [MHz)+1-m], =0. (30)

Now one can check that the singular vector is given by

m m

vim = Z ) &kl,...,k;_l(Xl_)m—kl (X)X R

k1=0 k|...1=0

X (X7 )PTR (X (X (XL )P (X (X)) @ g

(31a)
. L f{m m
1/ ¢ i-1/4
N (O] C: 1) I (A + p)(H™?)]
(A + 2)(H) = ky] 7 [N+ pHHT2) = k]
A H

[FIRY {.( \-i;f:')( \l_])l'] 107 [u(A :l:l'ol)EHl)l] 1 EI # 0 (31b)

WA T PIT ) — R AT PIUE ) — Ry_a)
where H* = Hy, = H,; + Hy+ -+ H,. Note that if we set formally { = 3 in these

formulae they will coincide w;th the formulae for Ay 2 D,, in particular in the form
(28), identifying the roots (@), ay, ag)p, — (@q, &y, @3) 4,
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4.8

The singular vectors given in (15), (19), (22), (25), (27), (28) and (31) are in the
generic situation, i.e. when condition (7) is fulfilled for 8, but not for the subroots of
8. Let us consider formula (15) or (27) for { = 2 when

[(A+p.0])~my], =0 =12 m; €L, m, +m, €N (32)

i.e. condition (14) is fulfilled in addition for at least one of the roots ay,a,, and for
the other root it may be broken only in the sense that the corresponding number m,
may be equal to zero. Then formulae (15a) and (15b) reduce to

o™ = g (X7 Y XE)™MXT)™ @ v (33a)
= (X Y"HXT)™(XF )™ @ vy (33b)
— Y —Yym %‘ fy=\Mma—kiv—ymasv—1k+mi o . 29,3
—\1g) £ tmakln ) g ) LAy} @ Ug Lol

k=0

mi

(XY™ ) e2 (X )™ TR XY™ (X )™ @ v, (33d)

k=0

where m =m; + m, €N, ¢}, ., ¢ ., respectively, is given by (15¢) with X replaced
by the Weyl dot reflection shifted highest weight A — mml = 8, -y, A—may = 8y @y,
respectlvely, i.e. with A(H;) + 1 replaced by —-m;, i = 1,2, respectively. [Weyl dot
reflections w - A are defined through the ordinary Weyl reflections w{i) by w - A =
w(A+p) — p, where w € W, W is the Weyl group of G generated by the reflections s,
corresponding to the simple roots «;, the ordinary Weyl reflections being defined by
8,(A) = A — (), a¥)a, for any o € A.] The four expressions in (33) are used to prove
commutativity of certain embedding diagrams, in particular the hexagon diagram of
U,(s1(3,C)) (23] (or, for g = 1, the hexagon diagram of sl(3,C) {25]).
If (32) holds then formula (19a) reduces to

VAT XX D™ @y o (L ey + g (340)
formula {22a) reduces to

PP X \IMoma YoM Y Y™ g g m=m, +m. (345)

g=1 FAS z /7 A A ) 1 2 A5 7

formula (25a) reduces to
vP™ = (X P X ™)™ ® v m=m;+m,  (34c)

Analogously let us consider formula (28) or (27) for { = 3 in the case when condition
(7} is also fulfilled for at least one of the simple roots a, a,, ag, i.e.

(A +p0))y—my),, =0 i=123 m; €L, m=m; +m,+my €N,

(35)
Denoting m,; = m; + m; we write down the reduction of formula (27a) or (28a):
oI = (XY (X)X ) (XY™ (XT )™ @ v (364)
= (XTI (X5 )M (XYM Y (XD)™ @ v (364)
= eg(Xg )™ (X )™ X)X )™ X3 )™ @ vy (36¢)

and several other expressions which analogously to (33c) and {33d) use the polynomials
corresponding to roots which are the sum of two simple roots {and some expressions
which use the trivial commutativity (X, X7] = 0).
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5. Singular vectors for g a root of unity

Let G be an arbitrary simple complex Lie algebra again. Let ¢ be a root of unity.
Then all Verma modules V* are reducible. For each V> there exist singular vectors
for arbitrary A € H*. They are given explicitly by [23]

I !
bk = TTI(XT YN @uy,  kj€Zy,Y k>0 (37)

i=1 i=1

where N; € N+1 are the smallest integers such that q?r" =1,j=1,...,{. Thefactors

(XJ-')"J'NJ' up to a sign belong to the centre of U (G) [23]. Namely, let a;,a;,i# j be
two simple roots with equal length so that a;; # 0 Then using Serre relat10nsh1ps (3)
and ¢; = g; we obtain

— =k —\E 3 - k=1 yr— e

Xi (Xj ) - '[k"" l]qj(Xj ) Xz' + [k]q_,-(Xj ) X:‘ Xj : (38)
Thus if ¢; = e2"/N; we have

X7(X7 )M = (=1)k (xRN Xy (39)

In particular, the elements (X J.')ZNJ‘ belong to the centre of U (G). It is clear that the
Verma submodules of V* correspondmg to the singular vectors in (37) are explicitly
given by V* with A = X — kN

Besides this there exist otfler smgular vectors if the highest weight A obeys the
condition (7). Consider § € A*, 8 = 3 n;a;, and let Ny € N+ 1 be the smallest
integer such that qgr’ =1, with ¢, as in (5). Let us have condition (7) fulfilled for 8
with some m € N but not fulfilled for any subroots of 8. Let k,n € Z, k+n > 0,

n < Ny be such that m = kN; 4+ n. Then we have the following expression for the
singular vector:

vk = (PEPR L PE @, (40)

where P2(X[,...,X[ ) is a homogeneous polynomial as in (8). For explicit expres-
sions of P we refer to formulae (11), (15), (19), (22) (25), (27), (28), (31), with m
repla.ced by u. Tt is clear that the submodules of V* correspondmg to the singular
vectors in (40) are explicitly given by V*' with ' = X — Z =1(k;N; +nnj)a, g

In summary, the singular vectors for ¢ a root of unity which are glven by (40) are
obtained by combining the factors H =1 (X[ )¥N5 (from (37)) with the polynomials
P2 (from (8)) giving the singular vectors in the generic case, however with the degree
m restricted by Ng.
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